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Supergavity

For our purposes, the supergravity (close string effective) action is

Sle. 6,01 = [ e72(R(&) = 3(4B. B, +4(d0,d),} dvol,

e (M, g) is an orientable Riemannian manifold;
e B € Q%*(M) is a Kalb-Ramond field a.k.a. B-field;
e ¢ € C>®(M) is a dilaton field.

Geometry behind this action?

Q Pairs (g, B) correspond to a generalized metric on
TM :=TM & T*M. Generalized geometry is the candidate.

@ Where to put the dilaton? Enlarge TM or encode it in some other
geometrical data?

© Many people found answers for various version of this action:
Coimbra, Strickland-Constable, Waldram, Garcia-Fernandez, Severa,
Valach, Jurco, Vysoky...
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Generalized geometry for supergravity

Ingredient I: Courant algebroids

A Courant algebroid is a 4-tuple (E, p, (-, )e, [, -]g), where

@ E is a vector bundle over M, p: E — TM is a vector bundle map
called the anchor;

@ (-, )¢ is a fiber-wise metric on E;

@ [, ]e is an R-bilinear algebra bracket on I'(E).
Those structures satisfy a bunch of axioms:

Q [, fY']e = v, ¢']e + (p(¥)F)Y;

Q p(V)(W' ") e = ([, ¥]e, ") e + (W', [, 9" ]e)e:;

Q [V, [V, ¢"]ele = [[¥,¥']e, ¥"]e + [V, [, ¥"]€le:

O ([, ¥],¥")e = 3p(V) (W, Y)E.

Axioms resemble a quadratic Lie algebra (g, (-, )4, [, ]g) promoted to an
“algebroid”, except for the peculiar axiom (4).

Jan Vysoky (joint work with Filip MouZka) Palatini variation in supergravity



Example (Dorfman bracket)

Consider E = TM, p(X,€&) := X, the canonical pairing of TM and T*M
and the Dorfman bracket [(X, &), (Y,n)]e = ([X, Y], Lxn — iydE).

Ingredient Il: Generalized metrics
Let (E, (-,-)) be a quadratic vector bundle. A generalized metric is a
maximal positive definite subbundle V. C E w.r.t. (-,-)k.

@ E decomposes as E =V @ V_, where V_ = Vf; V_ is a maximal
negative definite subbundle w.r.t. (-, ).

@ V. are *1 eigenbundles for a unique orthogonal involution
7:E — E, 72 =1, such that

G(v,¢') = (¢, 7(4)"))e

defines a positive definite fiber-wise metric on E.

© A generalized metric exists on every E. It corresponds to the
reduction of a structure group from O(p, q) to O(p) x O(q).
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Example (Generalized tangent bundle)

Let E = TM with the canonical fiber-wise metric (-, -)g. Every
generalized metric V. C E is of the form

F(Vy) ={(X, (g + B)(X)) | X e [(TM)}

for a unique pair (g, B), for a Riemannian metric g and B € Q?(M). The
induced fiber-wise metric G has the block form

G- g—Bg'B Bg!
“\ —¢'B gt )’

Ingradient Ill: Courant algebroid connections

Let (E,p,(-,")E,[",-]e) be Courant algebroid. A Courant algebroid

connection is an R-bilinear map V : T'(E) x ['(E) — I'(E) satisfying
Q V(fy,¢) = V(. ¢), V(¥ ) = V(4 ¢") + (p() )Y,
Q (V)W Y e = (V(W,¥"), ") e + (', V(¥,¢"))E.

We write V' := V (1, ¢").
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Example (CA connections always do exist)

There always exists a vector bundle connection compatible with (-, -)g:
V' T(TM) x [(E) — [(E).
Then V(¢,¢) := V'(p(¢), ') is a CA connection

@ CA connections have both inputs from '(E). There should be a
torsion operator. Naive one fails. Instead, one defines

Tv(7/1a1//71/)”) = <vw¢l - Vuﬂ/f - [l/f, wl]Ead//>E + <Vw”1/)71//>5~

Ty is completely skew-symmetric and C*°(M)-linear in every input,
hence called a torsion 3-form (Gualtieri 2007).

@ Each connection V induces a divergence operator given by
divy (¢) := Tr(V(:, %))
divy : [(E) — C>®(M) satisfies divy (fy)) = f divy (¥) + p(¥)f.
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@ The question of a curvature tensor is a bit more complicated. The
naive curvature tensor

R%(¢l7 ¢7 ’(/}7 ’(//) = <[v’¢7 Vw’](b - v[d),d/]g¢7 ¢I>E

fails to be C°°(M)-multilinear and with reasonable symmetries.

@ Instead one considers the following peculiar definition (originally by
Hohm and Zwiebach in DFT):

1
Ro(¢',6,1,0) = S{RG(¢, 0,9, 0) + RE (¢, 0,6, ¢)

+ Tr((V(—, w)?'(/]/)E : <v(gE(_), ¢)7 ¢I>E)}7

where gg : T(E) — [(E*) is induced by (-, }g. It is C°°(M)-linear in
all inputs and enjoys the symmetries:

Rv(gbl,(i),’ll),’ll)/) - Rv(¢,¢/,1/1»1//),
RV(¢,7¢J//’7//) - RV((ZS/ad)yw/aw)a
RV(¢/7¢a¢a¢l) RV(’(/)71/)/)¢/7¢)7

plus an algebraic Bianchi. Deeper meaning of Ry is a mystery.
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@ There is an unambiguous definition of a symmetric Ricci tensor

Ricy (v, ¢') := Tr(Ry (ge(=), ¥, = ¢").
This definition needs only V and the underlying CA.

@ Using an arbitrary fiber-wise metric G, one can take the trace to
obtain the scalar curvature of V with respect to G:

R% = TI’G(Rin) = Ricv(d}m G_I(WL))-

@ One can impose some conditions on CA connections V:

@ V is torsion-free, if Ty = 0.
@ V is compatible with a generalized metric V; C E, if

Vo (M(V4)) CT(V4) for all o € T(E).
Equivalently Vo7 =70V, or
p()G(W, ") = G(Vyt', 9") + G(y', V).

© V is a Levi-Civita connection with respect to V., if it is
torsion-free and compatible with V. Write V € LC(E, V).
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Suppose V € LC(E, V4). Any other CA connection V' is related to V as
(Vo' s 0" e = (V") e + K(, 4, 4"),

where K € QY(E) ® Q3(E) is unique. It is easy to see that
Q@ V' is torsion-free, iff K, = 0.
@ V' is compatible with V., iff (v, v4,4¢_) =0.
Q divys = divy, iff K'(v) := Tr[K(—, ge(—),%)] = 0 for all ¥» € [(E).

Proposition (Abundance of LC connections)

o LC(E, V) # 0 and it is infinite (except low dimensions).
o Letdiv:T(E) — C°>(M) be a given divergence operator, that is

div(F) = £ div(¥) + p()f.
Let LC(E, V4, div) denote the set of LC connections such that
divy = div.

Then LC(E, V,,div) # 0 and it is infinite (except low dimensions).
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Supergravity using generalized geometry

Theorem (Juréo, Vysoky 2016)

Let E =TM.
Q Let V. C E be a generalized metric corresponding to a pair (g, B).
@ Define a divergence operator div : [(E) — C>°(M) by the formula

div(X, €) := dives (X) — 2 - de(X),

where V& is the ordinary LC connection for g.
@ Let V € LC(E, V4, div) be arbitrary.
Then (g, B, ¢) satisfies the equations of motion of S, iff
Q RS =0;
@ V is Ricci compatible with V., that is Ricy(Vy, V_) = 0.

Under the reasonable assumption d¢|am = 0, S itself can be written as

Slg, B,¢] = / e 2’RE dvol,, .
M
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The claim of the theorem does not depend on the particular choice of V.
The condition on the divergence div can be equivalently rewritten as

| e, vl = [ ix(e* dvol,).
M

oM

We impose three non-trivial conditions on V:
@ It must be torsion-free;
@ It must be compatible with V/;

@ lts divergence must be defined by the above equation.

o We required (1) and (2) “apriori” as a starting point.

o We have calculated the quantities RS and Ricy(V,, V_) for the
most general V € LC(TM, V).

@ We have chosen a particular V to obtain the EOM of S. Later it
turned out that this can be written as the above divergence
condition.

Question: Are those requirements really necessary?
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Palatini variation

One can mimic the famous trick (supposedly by Einstein in 1920). We
will start with the following data:

@ An arbitrary Courant algebroid (E, p, (-, ), [, -]g); This will
determine our “generalized geometry”.

@ A generalized metric V. C E inducing a fiber-wise metric G on E.
@ An arbitrary Courant algebroid connection V on E;
@ An arbitrary volume form dvol on M,

One can use those unrelated data as fields for the following action:
S[V4, V,dvol] ::/ RE dvol
M

Recall that RS = G*[Ricy],,. Let us call this action rather stupidly as
Courant-Einstein-Hilbert action.
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How do the extremal fields of this functional look like?
Step 1: the variation of the volume form

Consider the variation
dvol’ := e“* dvol,

for an arbitrary A € C*°(M) satisfying Algps = 0. Then
S[V,,V,dvoll] = 5[V+,V,dvol]+e/ RS - Advol +0(?)
M
Whence dvol is an extremal field for S, iff R(v; =0.

@ This explains (but that is obvious in this case), why the SUGRA
equation of motion for the dilaton ¢ is equivalent to R% =0.
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Step 2: the variation of the generalized metric

o Let V; C E be a given generalized metric.

o Any other generalized metric V. can be written as

F(VL) =Tgr(e+)) = {4 o (v4) | s € T(Vi)},

for a unique vector bundle map ¢ : V| — V_.
e V/ is given using ¢_ : V_ — V., determined uniquely by o, .

We thus perform the variation V. as follows. Let ¢ : V; — V_ be an
arbitrary vector bundle map with ¢ |spm = 0. Set

Vi(e) = gr(eps),

where € > 0 is small enough for V/ (€) to define a generalized metric.
Such € always exists if M or supp(¢) are compact.
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It is straightforward that the inverse to the fiber-wise metric G.~! used to
define the scalar curvature has the block form

2g 7 T
G '=G'+e <2<pfg+1 g+0 <'0+> + 0(€),

where g is the (positive definite) restriction of (-,-)g to V.
It is then easy to calculate the variation

S[Vi(€), V,dvol] = S[V,, V,dvol]
+ae [ T [(Rico)s - (—.pr7 ()] dvol +0(c).
This proves that V. is an extremal of S, iff there holds the condition
Ricy(V4, V) =0.

This explains why the SUGRA equations for (g, B) correspond to the
Ricci-compatibility condition.
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N
Step 3: the (Palatini) variation of the connection
@ Let V be a given CA connection. One defines a variation

<V/e(w»w/)a ¢,/>E = <V(1/)71/)/)»¢”>E +€- ‘C(wvwlaw”)v

where £ € QY(E) ® Q2(E) is arbitrary tensor satisfying L|gn = 0.
@ Choose any auxiliary Riemannian metric gy (unrelated to V). Then

dvol = & - dvolg,

for a unique everywhere non-vanishing ® € C>*(M).

@ Using (go, ®), define a divergence operator

div(¢) := divya (p(1)) + dIn([®])(p(1)).

The right-hand side in fact depends only on dvol. Equivalently:

/div(ip)dvolz/ Ip(y) dvol .
M oM
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e Fix V% € LC(E, V4,div). Such a connection (except for lowest
dimensions) always exists.

@ One can then write V using V° and a tensor K:
<V(1/); 1/)/)7 w//>E = <VO(1/J» "//)7 ¢I/>E + ]C(dja ¢I7 w//)‘

In other words, we change K to K. = K + €L.
@ Using the fact that divye = div and L|sy = 0, we get

IV Visdvol] = S[Ve, V. dvoll e [ £75€,, 1, Vo] dvol +O(€2),
M

where C[K, V] € Q(E) ® Q3(E) is a tensor containing only K and
the generalized metric V. Amazingly, we got rid of derivatives of £
pretty easily.

@ In other words, V is an extremal of S, iff C[KC, V] = 0.
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Question: how to interpret C[/C, V] = 07

@ By contracting the first two inputs using (-, )£, we immediately
obtain (except for some low dimensions) that

K'(¢) = Tr(K(ge (=), = ¢)), Kg(¥) := Tr(K(G(=), =, ¥)).

vanish identically. This implies divy = divyo.
@ The vanishing of (+ 4+ —) and (— + —) components of C[/C, V]
implies that (v, ¥,,%¥_) =0, that is V is compatible with V,;

@ The vanishing of (+ 4+ +) and (— — —) components of C[/C, V4]
implies that IC; = 0, that is V is torsion-free.

In fact, we can go the other way round, that is

Answer: C[K, V] =0, iff V € LC(E, V., div);
The connection V is an extremal of S, iff V € LC(E, V., div), where div
is the divergence operator determined as above by dvol.
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Palatini variation: conclusion

Theorem (Palatini variation)

o Let (E,p,(-,-)E,[, |e) be any Courant algebroid. Suppose we are
giveng the following data:

@ a generalized metric Vy C E;
© a Courant algebroid connection V on E;
© a volume form dvol on M.

o Let div be a unique divergence operator satisfying the relation

/div(w)dvolz/ Ip(y) dvol .
M oM

Then (V1,V,dvol) extremalize the Courant-Einstein-Hilbert action, iff
9 RS =0;
@ Ricy(V4,V_)=0;
Q@ V e LC(E, V4, div).
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Example (Back to supergravity)

For E = TM over a connected M and V. ~ (g, B), we may use g to
write any volume form as

dvol = e 2% dvol,

for a unique ¢ € C*°(M). Note that g plays just an auxiliary role.
An apriori assumption V € LC(TM, V,,div) is thus obtained by plugging
the EOM for V from the Courant-Einstein-Hilbert action.

Some concluding remarks

@ this observation justifies the importance of LC connections, in
particular the notion of torsion 3-form seems to be natural,

@ the construction works for any Courant algebroid, for example the
heterotic one (a heterotic supegravity) or a quadratic Lie algebra;

o the C-E-H action behaves nicely under CA relations - e.g.
Poisson—Lie T-duality;

@ in principle it should be possible to add RR fields into the picture, or
consider more general theories of supergravity (Tseytlin);

@ we could try to use this to do generalized Einstein-Cartan theory.
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Thank you for your attention!



